Transverse nucleon structure and final states in pp collisions at LHC

C. Weiss (Jefferson Lab), DIS2011 "QCD and hadronic final states," 12-Apr-11

• Transverse distribution of partons

Hard exclusive processes in ep, generalized parton distributions

Gluons from J/ψ HERA, EIC

Parton-parton processes in pp

Impact parameter dependence of cross section

Central vs. peripheral collisions

Implications for final states

Underlying event: Transverse multiplicity, forward energy flow ATLAS, CMS 2011

Multiparton processes:

Dynamical correlations? CDF, D0, LHC

Rapidity gap survival in exclusive diffraction $pp \rightarrow p + H + p$

Transverse distributions: Exclusive processes

• Hard exclusive processes $\gamma^* N \to M + N$ $Q^2, M^2 \gg$ hadronic scale, |t| small

QCD factorization theorem Collins, Frankfurt, Strikman 96

GPDs: Gluonic form factor of nucleon universal, process—independent Müller et al. 94, Ji 96, Radyushkin 96

Operator definition $\langle N' | \text{twist-}2 | N \rangle$, renormalization, non-pert. methods

• Transverse spatial distribution of gluons x' = x

$$G(x,\rho) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i\rho \Delta_T} \operatorname{GPD}(x,t=-\Delta_T^2)$$

Tomographic image of nucleon at fixed x, changes with x and Q^2

• Large x: Quark GPDs, polarization, longitudinal momentum transfer $x' \neq x$

JLab12: DVCS, meson production

Transverse distributions: Gluons from J/ψ

• Exclusive process $\gamma^*N \to J/\psi + N$

Gluon GPD at $x \sim m_\psi^2/W^2$, $\mathit{Q}^2 \sim 3\,\mathrm{GeV}^2$

Reaction mechanism, universality tested at HERA H1, ZEUS

Transverse profile from relative t-dependence

• Transverse gluonic size of nucleon

Gluons concentrated at center $\langle \rho^2 \rangle_g(x \sim 10^{-2}) < \langle b^2 \rangle_{\rm charge}$

Radius grows slowly with decreasing x $\alpha_g' \ll \alpha_P' = 0.25 \, \mathrm{GeV}^{-2}$ Gribov diffusion suppressed by hard scale

 Q^2 dependence from DGLAP evolution calculable, weak FSW, PRD69 (2004) 114010

Proton-proton: Impact parameter dependence

- Hard process from parton-parton collision Local in transverse space $p_T^2 \gg (\text{transv. size})^{-2}$
- \bullet Cross section as function of pp impact parameter b

$$\sigma_{12}(b) = \int d^2 \rho_1 \ d^2 \rho_2 \ \delta(\boldsymbol{b} - \boldsymbol{\rho}_1 + \boldsymbol{\rho}_2)$$

$$\times G(x_1, \rho_1) \ G(x_2, \rho_2) \ \sigma_{\text{parton}}$$

Calculable from known transverse distributions Integral $\int d^2b$ reproduces inclusive formula

Normalized distribn $P_{12}(b)=\sigma_{12}(b)/[\int \sigma_{12}]$ FSW, PRD83 (2011) 054012

New information!

Spectator interactions and underlying event

Multiple hard processes

Gap survival in diffraction

Final states: Underlying event

CMS: Similar results

Two different sizes

$$R^2(\text{soft}) \gg R^2(\text{partons } x > 10^{-4})$$

Hard parton-parton processes require central pp collisions

Trigger on high- p_T jet selects central pp collisions!

• Geometric correlations

 $High-p_T$ trigger \rightarrow central collisions \rightarrow event characteristics

Example: Transverse multiplicity Also: Rapidity dependence, energy flow, . . .

Reveals minimum p_T where hard production mechanism dominates FSW, PRD83 (2011) 054012

Model-independent! Benchmarks for detailed MC simulations

Final states: Multiparton processes

$$\frac{\sigma(12; 34)}{\sigma(12)\sigma(34)} = \frac{1}{\sigma_{\text{eff}}}$$

$$\times \frac{f(x_1, x_3) f(x_2, x_4)}{f(x_1) f(x_2) f(x_3) f(x_4)}$$

ullet Double collision rate parametrized by $1/\sigma_{
m eff}$

Mean field $\sigma_{\rm eff}=\pi R_{13}^2$ avg distance btw collision points. Calculable from transverse distributions

$$\sigma_{
m eff}^{-1} \, ({
m mean \ field}) \ = \ \int \! d^2 b \, P_{12}(b) \, P_{34}(b)$$

Enhancement compared to mean field expectation indicates dynamical correlations

Data suggest substantial correlations

CDF 3 jet $+\gamma$ rate two times larger than mean field with $\langle \rho^2 \rangle (x \sim 0.1)$

Possible explanation: Short-distance scale in QCD vacuum from chiral symmetry breaking FSW, Annalen Phys. 13 (2004)

LHC: High rates for multijet events

Background to new physics processes

Detailed studies of parton correlations New field of study. Great interest! MPI@LHC 2010 Glasgow

Final states: Gap survival in diffraction

$$S^2 = \int d^2b \ P_{\mathsf{hard}}(b) \ \left| 1 - \Gamma(b) \right|^2$$

Central exclusive diffraction

Heavy system produced in hard two-gluon exchange

Concurrent soft spectator interactions must not produce particles
Khoze, Martin, Ryskin 97+

ullet Survival probability S^2

Mean-field S^2 calculable from transverse gluon distn and pp elastic amplitude Model-independent, pure transverse geometry FHSW PRD75 (2007) 054009

Basic suppression by factor $\sim 30-40$ from elimination of scattering at small b $\sqrt{s}=$ 14 TeV

Additional suppression by factor > 2-3 from dynamical correlations, black-disk regime Effect specific to LHC, marginal at Tevatron. Requires detailed modeling

ullet Diffraction pattern in p_{T1}, p_{T2}

Experimental tests: CMS/TOTEM or LHC420 STAR pp2pp @ $\sqrt{s} = 500 \, \mathrm{GeV}$

Summary

ullet Transverse spatial distribution of partons essential input in analysis of pp collisions with hard processes

Fundamental twist-2 characteristic, GPD

Measurable in hard exclusive processes in $ep/\gamma p$ Future data: COMPASS, JLab 12, EIC/LHeC

Impact parameter dependence of cross section for parton–parton processes in pp calculable from independently measured input

ullet Hard processes require/select central pp collisions

Geometric correlations: High- p_T trigger \to central collisions \to event characteristics Seen in CMS/ATLAS underlying event data!

Model-independent predictions, benchmarks for detailed MC simulations

• Multiparton processes in pp

Transverse geometry essential for identifying dynamical correlations

High rates expected at LHC, background for new physics processes

New field of nucleon structure: "Next step" after one-body parton densities